Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-15, 2021 Aug 04.
Article in English | MEDLINE | ID: covidwho-2273143

ABSTRACT

A well-validated in-silico approach can provide promising drug candidates for the treatment of the ongoing CoVID19 pandemic. In this study, we have screened 32 phytochemical constituents (PCCs) with Mpro binding site (PDB:6W63) based on which we identified three possible candidates that are likely to be effective against CoVID19-viz., licoleafol (binding energy: -8.1 kcal/mol), epicatechin gallate (-8.5 kcal/mol) and silibinin (-8.4 kcal/mol) that result in higher binding affinity than the known inhibitor, X77 (-7.7 kcal/mol). Molecular dynamics (MD) simulations of PCCs-Mpro complex confirmed molecular docking results with high structural and dynamical stability. The selected compounds were found to exhibit low mean squared displacements (licoleafol: 2.25 ± 0.43 Å, epicatechin gallate: 1.93 ± 0.35 Å, and silibinin: 1.39 ± 0.19 Å) and overall low fluctuations of the binding complexes (root mean squared fluctuations below 2 Å). Visualization of the MD trajectories and structural analyses revealed that they remain confined to the initial binding region, with mean fluctuations lower than 3 Å. To access the collective motion of the atoms, we performed principal component analysis demonstrating that the first 10 principal components are the major contributors (approximate contribution of 80%) and are responsible for the overall PCCs motion. Considering that the three selected PCCs share the same flavan backbone and exhibit antiviral activity against hepatitis C, we opine that licoleafol, epi-catechin gallate, and silibinin can be promising anti-CoVID19 drug candidates.Communicated by Ramaswamy H. Sarma.

3.
Front Immunol ; 12: 693938, 2021.
Article in English | MEDLINE | ID: covidwho-1523694

ABSTRACT

More than one and a half years have elapsed since the commencement of the coronavirus disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being caused by a previously unknown virus, in the initial period, there had been an extreme paucity of knowledge about the disease mechanisms, which hampered preventive and therapeutic measures against COVID-19. In an endeavor to understand the pathogenic mechanisms, extensive experimental studies have been conducted across the globe involving cell culture-based experiments, human tissue organoids, and animal models, targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-specific pathogenesis, involvement of physiological systems, and the human immune response against the infection. The vastly accumulated scientific knowledge on all aspects of COVID-19 has currently changed the scenario from great despair to hope. Even though spectacular progress has been made in all of these aspects, multiple knowledge gaps are remaining that need to be addressed in future studies. Moreover, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/virulence and immune escape capabilities than the wild-type strain. In this review, we narrate the progress made since the commencement of the pandemic regarding the knowledge on COVID-19 mechanisms in the human body, including virus-host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors. Additionally, we provide a brief review of the current evidence explaining molecular mechanisms imparting greater transmissibility and virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host Microbial Interactions/immunology , Animals , Human Body , Humans , Lung/immunology , Lung/virology , Pandemics/prevention & control , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL